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Abstract

For closed structures, the enclosed gas volume can contribute signi®cantly to the strength and sti�ness of a
structure. The present paper describes the use of a gas element which is incorporated into ®nite elements for shells.

In addition, a method to solve the governing set of equations e�ciently is described. The method has been applied
to a typical packaging example, namely a closed ®lled bottle. To validate the proposed method, numerical studies
have been compared with experiments. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many thin-walled structures surround a volume. Typical examples are ®lled bags, bottles, soft drink
cans, tires, balloons, athletic shoes with air compartments, etc. Deformation of such structures causes
internal pressure changes and may therefore in¯uence the mechanical properties signi®cantly. For
example, a buckling load can increase.

The present research originated from the fact that it was desirable for Unilever, a large manufacturer
of food products, to determine the compression strength of closed ®lled bottles for edible oil. E�ective
tools for simulation of the ®lled packages makes it possible to achieve more competitive designs at
acceptable design or reduced design costs.

In many Finite Element (FE) programs it is not possible to include this pressure e�ect easily.
However, the FEA program ABAQUS (ABAQUS, 1995) contains elements for solving problems
involving ¯uid-®lled cavities under hydrostatic conditions. Among others (Bucklin et al., 1985; Esslinger
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and Geier, 1976; Harris, 1957; Fung and Sechler, 1957; Goree and Nash, 1962; Weingarten et al., 1965;
Seide, 1962), Berry (1996) investigated internal pressure e�ects. The modelling was done using a
pneumatic element which relates the pressure to the internal enclosed volume. Applications that were
considered are pressurized soft drink cans and an air spring. The formulation of the pneumatic element
is started from the virtual work principle. The virtual work equation is augmented to account for the
virtual work corresponding to the pressure of the enclosed gas. The latter can easily be determined using
the corresponding gas law. The solution of the governing set of equations has not been addressed by
Berry (1996). Due to the fact that the pressure causes the system matrix to be non-sparse, solving the set
of equations, using a direct solver, is not obvious and will be described in the present paper. The results
of the described method have been compared with experimental and numerical results reported by Berry
(1996).

Other complications that were encountered involved a reversing of the pressure. If during an
incremental-iterative solution procedure the incremental volume change of the structure is larger than
the remaining gas volume, then the new gas volume becomes negative, consequently leading to a
negative pressure. Obviously, this situation is physically infeasible. This e�ect manifests itself mainly for
relatively small enclosed gas volumes. This situation is typical for many packages. By introducing a ¯uid
compliance, this numerical complication has been circumvented.

The present work can be divided in di�erent parts. Firstly, a theoretical description is given which
describes how the contents, gas and ¯uid, in¯uence on the internal gas pressure. Furthermore, this
section describes the prevention of the pressure reverse discussed earlier. Secondly, implementational
issues and solution of the non-sparse sti�ness matrix are addressed. Thereafter, some examples have
been presented. The examples compare analytical and simulated results and illustrate the bene®ts of a
¯uid compliance. Finally, two applications, an airspring (Berry, 1996) and a plastic bottle for edible oil,
have been described to validate the proposed method.

2. In¯uence of the gas and ¯uid

In Fig. 1, a typical closed-®lled structure has been depicted. The ®gure displays a closed bottle which
contains both gas and ¯uid and is being compressed.

In the sequel, the following assumptions have been made:

. hydrostatic pressure e�ects of the liquid are negligible in comparison with the pressure e�ects of the
gas;

. the gas behaves as an ideal gas;

. the temperature is constant;

. a constant amount of gas.

The virtual work corresponding to the pressure di�erence, can be expressed as

dW ext
p �

ÿ
p
ÿ
Vg

�ÿ pa

�
dVg, �1�

where p�Vg� represents the internal pressure which is a function of the gas volume, Vg: In case of a
constant amount of ideal gas and at constant temperature the gas law simpli®es to

pVg � p0V 0
g � Cg, �2�

where p0, V 0
g and Cg are the initial gas pressure, the initial gas volume and a constant, respectively (see

also Fig. 1). In the present setting, it is more convenient to express the gas law in terms of the enclosed
volume, V. In case the gas is governed by Eq. (2), the pressure is determined by

R. van Dijk et al. / International Journal of Solids and Structures 37 (2000) 6063±60836064



p � p0
ÿ
V 0 ÿ V 0

f

�
Vÿ V 0

f

, �3�

where V 0
f and V 0 are the initial ¯uid volume and the initial enclosed volume, respectively (see also

Fig. 1). Introducing

f � V 0
f

V 0
, v � V

V 0
, r � p

p0
, �4�

where f, v, r are the initial ¯uid fraction, the actual volume fraction and a normalized pressure,
respectively, Eq. (3) can be rewritten as

r � 1ÿ f

vÿ f
: �5�

As will be shown later, also the derivative of the pressure with respect to the volume will be required.
This derivative can be found by di�erentiation of Eq. (5), giving

dp

dV
� dr

dv

p0

V 0
� ÿ r

vÿ f

p0

V 0
:

During a FE calculation it can occur that v < f: This happens when the volume change caused by a
linearized step of the analysis is larger than the current gas volume leading to a new gas volume, vÿ f,
which is negative. This will consequently result in a negative pressure. This has been illustrated in

Fig. 1. Situation sketch, V, Vg, Vf , p and pa are the total enclosed volume, the gas volume, the actual ¯uid volume, the internal

pressure and the ambient pressure, respectively.
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Fig. 2. The in¯uence of ¯uid compressibility for a structure ®lled with 85% ¯uid. Analytical results are depicted. The horizontal

and vertical axes refer to the normalized volume and the normalized pressure, respectively. (a) Due to an incremental-iterative sol-

ution procedure the gas pressure can become negative. (b) The introduction of a nearly incompressible ¯uid with a ¯uid compliance

s, prevents the gas pressure from becoming negative for the full range of v. The pressure fraction r has been depicted for various

values of s.
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Fig. 2(a) where Eq. (5) has been plotted. Complications due to a negative pressure can be circumvented
by introducing a penalty factor (Hughes, 1987, pp. 196±197) for the ¯uid compressibility. The penalty
factor is de®ned as

c �
ÿ
pÿ p0

� V0
f

V 0
f ÿ Vf

, �6�

where c is the compressibility of the ¯uid. In case of an incompressible ¯uid, the compressibility c
becomes in®nite and consequently Vf � V 0

f : The total volume V is given by Vg � Vf and can be
expressed in terms of the internal pressure using Eqs. (2) and (6). This gives

V � p0

p
V 0

g �
�
1ÿ pÿ p0

c

�
V 0

f :

Similar to Eq. (4) the pressure, volume and ¯uid volume can be normalized. Furthermore, f � V 0
f =V

0

and V 0 � V 0
g � V 0

f can be combined to �1ÿ f � � V 0
g=V

0:
With the introduction of a normalized compliance for the ¯uid, s � p0=c, the normalized pressure can

be written as

1ÿ fÿ rv� rfÿ sf�r2 ÿ r� � 0: �7�
Solving Eq. (7) for r is straightforward. However, only the positive solution is relevant, which reads

r � 1

2

fÿ v� sf� q

sf
, �8�

where

q �
���������������������������������������������������
�fÿ v� sf�2ÿ4sf 2 � 4sf

q
:

Similar to Eq. (5) the derivative of the pressure with respect to volume can be evaluated, which becomes

dp

dV
� ÿ r

q

p0

V 0
:

In Fig. 2(b), the pressure fraction, r, has been depicted for various values of s. This ®gure shows that s
should be small such that the behavior of the structure is similar when containing an incompressible
¯uid. In Section 4, the e�ectiveness of the above approach will be illustrated on the basis of several
numerical examples.

3. Finite element approach

In a general FE setting (Bathe, 1996; Zienkiewicz, 1989) we often start from the principal of virtual
work which reads

dW int � dW ext, �9�
where dW int and dW ext are the internal and external virtual work, respectively.

Assuming linear elastic material behavior the internal virtual work can be formally described as
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dW int � deeeTs � deeeTSeee�u�

where e, s, u and S are the generalized deformations, the generalized stresses, the nodal degrees of
freedom and a symmetric matrix which depends on the elastic material properties and the precise
element de®nitions, respectively.

The corresponding rate equations becomeÿ
DTSD�G

�du

dl
� df

dl
:

The matrix G represents the geometric sti�ness matrix. The matrix D gives the relations between the
deformation rates and the nodal velocities. The last term, the load vector f, can in the present setting be
described by two terms

f � lfl � f p,

where lfl is an external load vector, independent of u, which can be scaled with the load factor l: The
vector f p is the external load due to the gas which, with the help of Eq. (1), can be written as

f p � ÿpÿVg

�ÿ pa

�@V
@u

�10�

The way in which the enclosed volume of the structure is calculated, is described in Appendix A. During
a FE analysis the external load will be incremented by changing the factor l: The corresponding rate
equations become�ÿ

DTSD�G
�
ÿ @ f p

@u

�
du

dl
� fl: �11�

With Eq. (10) it follows that

f
p
i, j �

dp
ÿ
Vg

�
dV

V,iV,j �
ÿ
p
ÿ
Vg

�ÿ pa

�
V,ij, �12�

where . . .,i refers to
@ ...
@ui
:

It may be clear, that V is a function of nearly all nodal degrees of freedom. Therefore, the ®rst term
in the rhs. of Eq. (12) yields a non-sparse contribution to the system matrix. The contribution f

p
i, j is

symmetric and has previously been examined by many investigators (Hibbit, 1979; Mang, 1980;
Schweizerhof and Ramm, 1984; Loganathan et al., 1979; Weingarten et al., 1965) (the reader has also
referred to Appendix A). The non-sparse system matrix requires a special method to solve the set of
equations using a direct method. Combining Eqs. (11) and (12) in such a way that the sparse and non-
sparse components are separated leads to�

K� kaaT
�du

dl
� fl, �13�

with

K � DTSD�Gÿ �pÿ pa � @
2V

@u@u
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k � ÿ dp

dV
, a � @V

@u
:

As can be seen from Eq. (13), K is still sparse, whereas the non-sparse contribution has been described
by kaaT: A technique to solve Eq. (13) has been found by trying

du

dl
� ma� b, a � b � 0:

This results in

b � Kÿ1fl ÿ m
ÿ
a� ka2Kÿ1a

�
with

m � aTKÿ1fl

a2
ÿ
1� kaTKÿ1a

� , a2 � aTa:

This way of solving is similar to the Sherman±Morrison formula (AkguÈ n et al., 1998; Golub and van
Loan, 1989; Hager, 1989) where the inverse of a modi®ed matrix is related to the original matrix.
AkguÈ n et al. (1998) uses the Sherman±Morrison formulas for fast static reanalysis in order to ®nd the
response of a structure after modi®cations by using the original response of the structure. The required
computional e�ort for this is much less than the e�ort required by a complete analysis. The Sherman±
Morrison formulas utilize the property that the solution of a system of linear equations can be updated
inexpensively when the matrix is changed by a low-rank increment (AkguÈ n et al., 1998).

More details and a slightly modi®ed formulation, which is also applicable when the matrix K is
singular, are given in Appendix B. It is noted, that the problem of a non-sparse matrix could also be
circumvented using a Lagrange multiplier formulation. In that case the formulation starts of from the
introduction of an additional kinematic variable, being the volume of the structure. This approach will
lead to governing equations which are similar to the ones described here.

Fig. 3. Square plate that determines a pyramid shaped reference volume. The reference volume can contain a combination of ¯uid

and gas.
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Fig. 4. Simulated compression of a rigid structure ®lled with 85% ¯uid. The horizontal axes refer to the normalized volume,

whereas the vertical axes refer to the normalized pressure. (a) Structure with an incompressible ¯uid. (b) Structure with a nearly

incompressible ¯uid.
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4. Examples

In this section the e�ectiveness of the penalty method as de®ned by Eq. (6) will be examined by four
examples, namely:

. an undeformable structure containing an incompressible ¯uid;

. an undeformable structure that contains a nearly incompressible ¯uid;

. a ¯exible structure containing an incompressible ¯uid;

. a ¯exible structure that contains a nearly incompressible ¯uid.

All four examples are based on the same problem de®nition. The structure that has been considered is

Fig. 5. Deformed con®gurations of a ¯exible structure ®lled with 85% ¯uid. Two series of subsequent con®gurations have been

depicted. The horizontal lines depict the undeformed con®guration. The applied load increases in the downward direction. (a) De-

formation of the structure with an incompressible ¯uid. (b) Deformation of the structure with a nearly incompressible ¯uid.
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depicted in Fig. 3, which shows a square plate that determines a pyramid shaped reference volume. The
reference volume is ®lled with 85% ¯uid. A displacement in downward direction has been prescribed
along all sides. The in-plane displacement components and all the rotations about the sides have been
set to zero. During the downward movement of the plate the internal pressure will increase and causes
deformation of the ¯exible plate. If during an FE analysis the volume change of the structure is larger
than the remaining gas volume and the ¯uid is incompressible then the pressure becomes negative as
discussed in Section 2. This is more prone to happen with sti� structures and can be circumvented by
application of the penalty method.

The undeformable structure consists of a square plate modeled by only two triangular elements (van
Keulen and Booij, 1996; van Keulen et al., 1993; Booij and van Keulen, 1994). The used element has a
rotational degree of freedom about each element side and three translational degrees of freedom at each
corner node. Since, the rotations about the sides of the structure have been set to zero and only two
elements are used, the model will remain ¯at. As can be seen in Fig. 4, the pressure becomes negative in
case of an incompressible ¯uid and remains positive in case of a nearly incompressible ¯uid. These
results match with the analytical results as depicted in Fig. 2. Notice, that the reference volume remains
a pyramid with ¯at faces, which is a consequence of the too coarse model, which consist of only two
elements.

Fig. 6. Simulated compression of a ¯exible structure ®lled with 85% ¯uid. The horizontal axis refers to the normalized volume,

whereas the vertical axis refers to the normalized pressure. Two simulations have bee depicted: with (compressible) and without

penalty factor (incompressible).
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The ¯exible structure consists of a square plate modeled using a ®ne mesh (see Fig. 5). As can be seen
in Fig. 6 the pressure becomes negative in case of an incompressible ¯uid and causes the curvature of
the deformed con®guration to reverse (see Fig. 5(a)). In case of a nearly incompressible ¯uid the
pressure remains positive.

Fig. 7. The two-bellowed airspring (by courtesy of Firestone, 1997).

Fig. 8. Dimensions of the airspring as used in the model.
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5. Application

Two applications for which the pressure in¯uence plays a signi®cant role will be described. The ®rst
example is an airspring that has been studied by Berry (1996). The second example is a plastic bottle for
edible oil.

An airspring is an air-®lled reinforced rubber balloon held ®xed between two rigid end plates. As the
end plates are moved up and down, the internal volume expands or contracts, providing the additional
pressure to support the loads. Nearly all of the load carrying capacity of the airspring is contributed by
the enclosed air (Berry, 1996). The two-bellowed airspring, as used by Berry has been depicted in Fig. 7.

Fig. 9. Mesh of the airspring model.

Fig. 10. Experimental and simulated results for the airspring example. The horizontal axis refers to the compression of the air-

spring, the vertical axis gives the required compression force. The pressures 1.378, 2.756 and 4.134 bar are initial internal pressures

at 0 mm compression.
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Fig. 11. Geometry of the 750 ml round oPET bottle used for packing edible oil.

Fig. 12. Experimental setup of the pressure and top load measurements.
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Fig. 13. Simulated deformation of a nearly full bottle under top load. This ®gure depicts a bottle far past its initial buckling. Since

the bottle was supported on the outer diameter only (the bottle was standing on a ring), the high internal pressure caused the bot-

tom to buckle outwards. The last is in agreement with experimental results.
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Due to symmetry Berry used an axisymmetric model as depicted in Fig. 8, which also depicts the
dimensions of the spring. The airspring is made out of rubber reinforced by two layers of polyester
cords, which causes the spring to have a very high membrane sti�ness and a very low bending sti�ness.
The results from Berry have been compared with results obtained by the present approach. For this a 1

16

model of the airspring was modeled using triangular elements (Booij and van Keulen, 1994; van Keulen
et al., 1993; van Keulen and Booij, 1996). The model had the dimensions as depicted in Fig. 8 and
isotropic material properties (Young's modulus: 3000 N/mm2, Poisson's ratio: 0.35) are used. The
airspring is modeled with a thickness of 2 mm. It can be expected that for low internal pressures the
load-compression curve will be di�erent as compared to the results of Berry (1996) due to the usage of
di�erent material properties. However, at higher pressures this e�ect should decrease. The mesh of the
model has been depicted in Fig. 9, on all sides, except the sides at the top, symmetry conditions have
been applied.

On the top surface of the airspring displacements in downward direction have been prescribed. The
initial internal volume has been set to 1.3257� 107 mm3, which is conform the actual internal volume of
the airspring. Simulations have been carried out for 3 di�erent initial pressures (1.378, 2.756 and 4.134
bar at 0 mm compression). This is conform the experiments as described by Berry (1996), where the
airspring was clamped between two horizontal platen, after which the initial internal pressure was
increased to the desired initial internal pressure. The results from simulations and experimental results
(Berry, 1996) have been depicted in Fig. 10. This ®gure also shows that for small internal pressures, as

Fig. 14. Experimental and numerical results for a bottle ®lled with 90, 75 and 0%(empty) of ¯uid. The compression and the

required compression load have been plotted on the horizontal and vertical axis, respectively. Note, that lines have been used for

experimental results.
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mentioned before, results di�er due to di�erent material properties. This explains why the results for an
initial pressure of 1.378 bar di�er relatively more from the calculated and experimental results of Berry
(1996) than the results for higher initial pressures.

The second example describes the in¯uence of the internal pressure for a plastic bottle for edible
oil. The bottle as depicted in Fig. 11 is a 750 ml oPET (oriented PET) stretch-blown bottle for
vegetable oil. During compression of the bottle, for example caused by stacking, a signi®cant pressure
increase occurs in the bottle. Several bottles, with di�erent ®ll levels have been studied experimentally
and afterwards simulations have been carried out for validation of the described model. In Fig. 12 the
experimental set up has been depicted. During the experiments the bottle was closed with a plug. A
small channel inside the plug and a narrow metal tube connected the headspace with the barometer.
From several bottles the compression force, the internal (over)pressure and the vertical compression
were evaluated and recorded on a computer. In all simulations triangular elements (Booij and van
Keulen, 1994; van Keulen et al., 1993; van Keulen and Booij, 1996), and linear material behavior
have been used. The ®nite element model of the bottle is depicted in Fig. 13. As can be seen in
Fig. 14 the calculated and measured results match well. The fact that the buckling load of the bottle
is not adequately described during the simulations can be appointed to the used material properties
and the fact that initial imperfections in geometry and wall thickness distribution have not been taken
into account (van Dijk, 1997; van Dijk et al., 1998). The ®gure clearly points out that the internal
pressure signi®cantly contributes to the strength and sti�ness of the structure. The di�erence between
experimental and calculated results at higher internal pressures for a bottle ®lled for 90% with ¯uid is
caused by solubility e�ects which have not been taken into account. One might expect that at higher
pressures and small gas±¯uid ratios, the e�ect of gas components (in this case oxygen and nitrogen)
dissolving in ¯uid becomes more pronounced.

In current practice the bottle is ®lled for 96.8% or more with ¯uid. In the present paper only bottles
®lled up to 90% have been examined, higher ®ll levels require inclusion of the solubility e�ect (van Dijk
et al., 1999) which is beyond the scope of the present paper.

Fig. 15. Element, reference point and origin.
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6. Conclusions

Many structures enclose a certain volume. Often this volume is ®lled with gas whereas in other
structures a combination of ¯uid and gas is present. The gas enclosed by a structure can signi®cantly
contribute to the strength and sti�ness. The methods to solve the governing equations as described in
the present paper take this pressure e�ect into account even when the initial sti�ness matrix is singular
and preserve the sparse structure of the system matrix. The complication of a singular modi®ed sti�ness
matrix (K) has been addressed in Appendix B. In most cases the approach discussed in Section 3 will be
most e�cient. Notice, that only in rare cases the modi®ed system matrix will be singular. The
implementation of the solution procedure which is applicable to singular initial sti�ness matrices
(Appendix B) is signi®cantly more involved as compared to the formulation presented in Section 3.

Some complications can occur when during a FE analysis the volume change during a linearized step
is larger than the remaining gas volume. When the ¯uid is incompressible this leads to negative internal
pressure. Obviously, this situation is physically infeasible. The last can be circumvented by introduction
of a ¯uid compliance. This compliance should be chosen very small in order not to a�ect the ¯uid
volume in the structure.

The proposed model and its implementation has been veri®ed by two practical examples has ®nally
been veri®ed by two practical examples, namely an airspring and a plastic bottle. The calculated results
were in good agreement with the experimental results. As for the airspring example adequate
information on material data is missing, results indicate discrepancies for low internal pressures.
However, as soon as the mechanical behaviour is dominated to a signi®cant extent by the internal
pressure, numerical and experimental results are in perfect agreement. In case the amount of gas is small
as compared to the ¯uid volume, deviations with experimental results tend to be large. This e�ect is due
to solubility e�ects which play a crucial role for small gas-¯uid ratios. This aspect will be the subject of
a forthcoming paper.
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Appendix A

A.1. Calculation of the enclosed volume

The volume enclosed by the structure can be determined straightforwardly. In Fig. 15 a triangular
element (van Keulen and Booij, 1996; van Keulen et al., 1993; Booij and van Keulen, 1994) has been
depicted with a ®xed reference point, p. The total enclosed volume of a closed structure can be
determined by

V �
Xn
k�1

Vk, �A1�

where k, n and Vk are the element number, the total number of elements and the contribution of a
single element to the reference volume, respectively. The contribution of a single element to the reference
volume is de®ned by the tetraedrical volume which is de®ned by the reference point, p, and the corner
nodes of the element. This volume can be calculated using
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Vk � 1

6
r1 � �r2 � r3�, �A2�

where r1, r2 and r3 are the position vectors of the corner nodes with respect to the reference point p.
These vectors span the tetraeder and are depicted in Fig. 15. In every con®guration the vectors ri are
determined by

ri � xi � Ãui ÿ p,

where xi and Ãui are the initial corner node location vectors and the nodal displacement vectors,
respectively.

A.2. First-order derivatives of the volume

From Eq. (A2) the ®rst-order variations of the volume can be determined, giving

dVk � 1

6
dr1 � �r2 � r3� � 1

6
r1 � �dr2 � r3� � 1

6
r1 � �r2 � dr3�:

After rearranging and substitution of dri�d Ãui, dVk reads

dVk � 1

6

h
d ÃuT

1d ÃuT
2d ÃuT

3

i24 r2 � r3
r3 � r1
r1 � r2

35: �A3�

A.3. Second-order derivatives of the volume

The second-order variations can be obtained by di�erentiation of the ®rst-order variations. With Eq.
(A3) the second-order variations of the volume read

d1d2Vk � 1

6

h
d1 ÃuT

1d1 ÃuT
2d1 ÃuT

3

i24 d2�r2 � r3 �
d2�r3 � r1 �
d2�r1 � r2 �

35:
This can be rewritten as

d1d2Vk � 1

6

h
d1 ÃuT

1d1 ÃuT
2d1 ÃuT

3

i
G

24 d2 Ãu1

d2 Ãu2

d2 Ãu3

35,
where G is the following matrix
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G �

266666666666664

� � � � r33 ÿr23 � ÿr32 r22
� � � ÿr33 � r13 r32 � ÿr12
� � � r23 ÿr13 � ÿr22 r12 �
� ÿr33 r23 � � � � r31 ÿr21

r33 � ÿr13 � � � ÿr31 � r11
ÿr23 r13 � � � � r21 ÿr11 �
� r32 ÿr22 � ÿr31 r21 � � �

ÿr32 � r12 r31 � ÿr11 � � �
r32 ÿr12 � ÿr21 r11 � � � �

377777777777775
:

Here, rij refers to the ith component rj: Note, that G is symmetric.

Appendix B

The present appendix discusses two techniques to ®nd the solution of"�
Kcc Kc0

K0c K00

�
� k

"
acacT

aca0T

a0acT a0a0T

##�
Duc

Du0

�
�
�
Dfc

Df0

�
:

The unknown variables are Duc and Df0, whereas Du0 and Dfc are the known variables. Looking at the
unknowns, Duc only and by trying

Duc � mac � bc, acT

bc � 0, �B1�
the following augmented set of equations can be obtained"

KccKccac � k
ÿ
acT

ac
�
ac acT

0

#�
bc

m

�
�
"
Dfc ÿ

ÿ
Kc0 � kaca0T

�
Du0

0

#
: �B2�

The ®rst approach that will be described to solve Eq. (B2) will make use of the inverse of the sti�ness
matrix Kcc, while an alternative technique does not and is therefore applicable when Kcc is singular.

B.1. Regular sti�ness matrix

The ®rst technique assumes a regular sti�ness matrix Kcc: From Eq. (B2) it can be determined that

bc � Kccÿ1
�
Dfc ÿ

ÿ
Kc0 � kaca0T

�
Du0

�
ÿ mac ÿ mk

ÿ
acT

ac
�ÿ

Kccÿ1ac
�
: �B3�

Pre-multiplication by acT

gives

m �
"

acT

Kccÿ1
ÿ
Dfc ÿ

ÿ
Kc0 � kaca0T

�
Du0

�
�acT

ac �ÿ1� kacT
Kccÿ1ac

� #
, �B4�

where use of acT

bc � 0 has been made. Combining Eqs. (B1)±(B3) leads to the solution of Eq. (B2)

Duc � ÿk
"

acT

Kccÿ1
ÿ
Dfc ÿ

ÿ
Kc0 � kaca0T

�
Du0

�ÿ
1� kacT

Kccÿ1ac
� #ÿ

ac
T

ac
�ÿ

Kccÿ1ac
�
�Kccÿ1

�
Dfc ÿ

ÿ
Kc0 � kaca0T

�
Du0

�
:
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This technique requires only one additional back substitution in order to calculate Kccÿ1ac and proved
very e�cient. It is emphasized that the approach works only for a regular sti�ness matrix.

B.2. Singular sti�ness matrix

In case the initial sti�ness matrix is singular the previous technique is not applicable and another
approach must be followed to solve Eq. (B2). The alternative technique makes Eq. (B2) symmetrical by
pre-multiplying it with

T �
�

I 0
acT

kacT

ac

�
,

where I is a unity matrix with the same dimensions as Kcc: This results in24Kcc Kccac � k
ÿ
acT

ac
�
ac�

Kccac � k
ÿ
acT

ac
�
ac
	T

acT

K ccac � k
ÿ
acT

ac
� 2
35�bc

m

�
�
"
Dfc ÿ

ÿ
Kc0 � kaca0T

�
u0

acT
ÿ
Dfc ÿ

ÿ
Kc0 � kaca0T

�
u0
� #: �B5�

As can be seen from Eq. (B5), the matrix on the lhs. is symmetric. In spite of the fact that the sti�ness
matrix Kcc can be singular, the modi®ed matrix can be regular. The obtained augmented set of Eq. (B5)
can be solved with a direct solver. A more careful inspection of Eq. (B5) reveals that only an additional
row or column has to be stored
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